
LEAP for Ad-hoc Networks
Jamie Lawrence

mailto:jamiel@mle.media.mit.edu
Disclaimer
This document is a work-in-progress and is subject to change.
Copyright © 2002 Media Lab Europe Limited. All rights reserved.

Abstract
This document is intended to provide an overview of the effort to enable the Lightweight
Extensible Agent Platform (LEAP) to operate in ad-hoc networks. I discuss the motivations
behind this project, the usage scenarios and finally the required modifications to LEAP. With
this document I wish to inform the members of the LEAP, JADE, and FIPA communities
about my research plans and solicit any feedback they may wish to offer.

Approach
The approach taken by this project is to integrate existing peer-to-peer (P2P), service
discovery and ad-hoc networking technologies into the LEAP platform to provide a robust
infrastructure for deploying agents within an ad-hoc network.

Ad-hoc networks are the subject of current research into future generation networks but like
most new technologies the term is often misused and misunderstood.

ad hoc adj
1: often improvised or impromptu; "an ad hoc committee meeting"
2: for or concerned with one specific purpose; "a coordinated policy instead of ad hoc
decisions" adv : for one specific case; "they were appointed ad hoc"
Source: WordNet ® 1.6, © 1997 Princeton University

Due to the current focus on ad-hoc routing protocols there has been a trend to classify ad-hoc
networks as just those networks that require multiple hops to deliver a message. We do not
limit our scope in this way. Neither do we require an ad-hoc network to operate using radio
technology; infra-red and fixed wireline networks can exhibit the same ad-hoc properties and
benefit from the results. This document uses the term “ad-hoc” to refer to the presence of a
decentralised infrastructure, unpredictable nature and transient local interactions between
multiple nodes.

UDP/
IP

Bluetooth802.11b /
IrDA

RF
Radio

LEAP Platform

Service Discovery

Figure 1: The "Big" Picture

Certain assumptions are made by this project:

• As shown in Figure 1, a Service Discovery middleware will be available to notify the
agent platform of changes to its local environment. This mechanism may be tightly
coupled with the transport protocol (such as the Service Discovery Protocol in
Bluetooth or IP broadcasts) or a more generic system such as JXTA[10] or Jini[8].
Low-level active routing protocols (such as OLSR[11] or ZRP[12]) or information
gathered from the physical layer may be used to aid the discovery process.

• Most suitable transport protocols will take care of all multi-hop routing and network-
level navigation, such as NAT and firewall traversal. The majority of the research

Page 1 of 9
Jamie Lawrence jamiel@mle.media.mit.edu

mailto:jamiel@mle.media.mit.edu
http://www.dictionary.com/cgi-bin/dict.pl?config=about&term=00-database-info&db=wn

into ad-hoc networks and P2P systems has been in this area and it is generally
preferable to platform-based routing.

• Constrained devices will typically host only a single agent and therefore less
emphasis needs to be placed on common services (such as directories) within the
platform. However, the concept of a platform is still valid as it allows the abstraction
of common functionality from the agent code and compatibility with larger
environments.

Terminology1
See Figure 2: Basic Usage Scenarios for a visual indication of these terms.

Fragment
A fragment, for the purposes of this document, consists of a JADE-LEAP container hosting
one or more agents. A fragment resides on a single device and may optionally host a
directory service such as an Agent Management Service (AMS) and/or Directory Facilitator
(DF).

Compound
A compound is a collection of fragments registered with a common directory service. Note
that fragments may be registered with multiple directory services.

Federated
Connected so as to appear as a single entity to the user. For example, a search can take place
across many federated directories that appear as a single directory to the user.

Federation
A federation is a collection of compounds with federated directory services.

Platform
There is no longer the notion of a static FIPA-compliant platform since any fragment may
become FIPA compliant depending on its configuration and circumstances. Use of this term
within this document typically refers to the code under development rather than a runtime
entity.

Directory Service
A Directory Service is simply an AMS and/or DF. The term is used when no distinction
between the AMS and DF is required.

Discovery Service
A new service that will be developed as part of this project and that is explained more fully
below.

Neighbourhood and Locality
If any reference is made to locality it is in the context of the network being used; an IP
network might use subnets, a wireless network might use signal strength or range, and multi-
hop networks might use the hop count of a route.

FIPA-related Terms
DF Directory Facilitator is a yellow-pages directory service
AMS Agent Management System is a white-pages directory service
MTS Message Transport Service is the communication mechanism used by FIPA platforms

1 Much of the terminology and inspiration for this work comes from FIPA [3], the LEAP Project [2,7]
and the JADE platform [1].

Page 2 of 9
Jamie Lawrence jamiel@mle.media.mit.edu

Motivations
The current implementation of LEAP, like that of its JADE ancestor, has a static structure
consisting of one main container providing FIPA interoperability to one or more (possibly
lightweight) containers. Although containers may join or leave at any time, the platform
includes no mechanism to actively handle this and maintain a consistent directory. It is not
possible to reassign the main container’s functionality to another container at runtime or to
start a lightweight container without the existence of a main container. The ability to run a
lightweight container without depending on a main container or running an AMS and DF
locally is important, and therefore I would like to address this shortcoming in this project.

Crucially, the LEAP platform includes no mechanism for dynamically discovering containers
at runtime. This will limit its deployment in an ad-hoc network and is therefore the primary
focus of this project.

Requirements
• Removal of AMS, DF and Main container as mandatory requirements for hosting agents
• Discovery of fragments
• Dynamic formation of fragments into compounds and associated strategies
• Dynamic creation of directory services within fragments and associated strategies
• Leased directory entries to ensure consistency over time
• Active updates to the directory services as agents join and leave the network
• Directory subscription mechanism to enable fragments to receive notifications
• JADE API compatibility from the agent developers viewpoint

Basic Usage Scenarios

Key:

Fragment Registration

FederationFragment hosting a
Directory Service

Compound

Communication

1

2 7

6

5

4

3

8
9

Figure 2: Basic Usage Scenarios

1. Direct Communication between Fragments
This scenario describes direct communication between two fragments using some
peer-to-peer discovery technique rather than any form of directory service. As the
two devices discover each other their platform descriptions and the descriptions of all
the agents each fragment is hosting are exchanged. In addition, each fragment
internally notifies each hosted agent of the newly discovered agents in the other
fragment.

This scenario is limited in scalability and would only be used between a few
fragments.

Page 3 of 9
Jamie Lawrence jamiel@mle.media.mit.edu

2. Activation of Directory Services
One or more directory services (typically an AMS and DF) will be activated within a
fragment according to a pre-defined strategy. On a constrained device (such as a
mobile phone) this strategy may be simply “never host a directory”. On a more
capable device (that perhaps forms part of a backbone) the strategy would be “always
host a directory”, mimicking the current JADE-LEAP functionality. A wealth of
strategies exists between these two extremes.

One of these strategies might involve monitoring the number of P2P discovery
requests being made and the number of local fragments not registered in a directory.
If either of these measures crosses a specified threshold then a directory service may
be created (with a suitable random back-off time to ensure every fragment doesn’t
come to the same conclusion).

Once a directory service has been created the discovery service will register all of the
local agents with it (as explained more fully below). In addition, from this point on
only the directory services will be advertised, and the individual agents must be
discovered by first searching the directory service.

The deactivation of directory services would follow a similar pattern.

3. A Fragment Connects
When a fragment has become discoverable (i.e. it has been created or moved into
range) it will detect the presence of a directory service belonging to another fragment
and subsequently register all its hosted agents with this directory. Once the agents are
registered with at least one (local or remote) directory service the fragment will only
advertise that directory service (not all of the hosted agents) unless specifically asked
to do so. In this way individual fragments can reduce their load during discovery by
referring all search requests to a fragment with a directory service. In cases where a
fragment is discovered but its associated directory cannot be contacted, the basic P2P
discovery can take place between the two fragments (see Scenario 1).

4. A Fragment Disconnects
If a fragment is being shut down then it may perform intentional disconnection by
deregistering its hosted agents from all directory services. However, more often the
fragment will be unexpectedly disconnected due to user intervention or network
disruption. In these circumstances the fragment and directory services might be
notified of this by the service discovery middleware and take the appropriate clean-up
action. In any case, as all directory listings are leased, the directory services will self-
heal once those leases expire (Jini-style[8]). The fragment will also recognise the
disappearance of a directory through the same method. The fragment then will again
begin using P2P discovery / advertisement techniques.

5. Registration of an Agent
An agent is registered with a directory service once the fragment has discovered one.
This is covered in Scenario 3.

6. Multiple Registrations of an Agent
An agent may be registered with multiple directory services at any one time.

7. Federation of Directory Services
If a fragment hosting a directory service discovers another directory service then the
two may federate together based upon some pre-defined strategy. This strategy may
be as simple as a timer to ensure the link is stable enough and prevent spurious and
short-lived federations.

Page 4 of 9
Jamie Lawrence jamiel@mle.media.mit.edu

8. Disconnected Fragments
A fragment may be completely disconnected from all other fragments. In this case,
the fragment will continue to attempt discovery of other nearby fragments and the
hosted agents will only be able to contact each other.

9. Communication between Fragments
Communication between agents happens as usual, with one caveat: due to the nature
of wireless networks and the federation of directories, it is possible for an agent to be
discovered on a remote fragment which you are unable to directly communicate with.
For this reason, all agents registered with a remote directory service must register two
transport addresses: that of the fragment they’re hosted on and the address of the the
directory service through which they were discovered. In this way messages will first
be sent directly to the agent’s fragment and if this proves unreachable the message
will be routed via the directory service. In some cases the underlying transport
protocols will provide multi-hop routing to replace this mechanism.

Modifications of the LEAP Platform required to support
Ad-Hoc Networks

Fragment A

MTS

AMS DFAgent

Fragment B
MTS

1 2

3 4

Discovery

DS

DS

Figure 3: Overview of the modifications to LEAP. Red indicates new discovery-related
communications or components. Dotted lines indicate an optional component.

Several modifications must be made to enable the LEAP platform within an ad-hoc
environment (see Figure 3).

Discovery Service
The largest modification is the addition of a discovery service2 (DS) that is responsible for
advertising and discovering the presence of fragments, agents and directories in addition to
controlling the activation of the directory services. This discovery service is implemented as
an agent with support for one or more discovery mechanisms3.

The minimum information advertised by a concrete discovery protocol is the name and type
of the fragment and the AID of its discovery service. Further information may then be

2 See “ ” for a discussion on whether the functionality of the
discovery service could be merged with the AMS.

Appendix B: Compatibility Issues

3 See “ ” for a discussion on
whether the discovery service should be implemented as an agent or a software component.

Appendix A: Modelling the Discovery Service as a Platform Component

Page 5 of 9
Jamie Lawrence jamiel@mle.media.mit.edu

requested directly from the discovery service using standard agent communication4. The
discovery service will support the following functions: register, deregister, subscribe,
unsubscribe, get-advertisement, get-agents.

(1) register, deregister. This function allows an agent to register or remove its description
with the discovery service. This function is only available to local agents.

(2) subscribe, unsubscribe. This allows a local agent to subscribe to the notifications that are
broadcast when agents are discovered or disappear.

(3) get-advertisement. This function enables a remote discovery service to retrieve the
advertisement for the (local) fragment. If the agents on this fragment are not registered with a
directory then a description of each agent is returned to the remote fragment. Otherwise, a
reference to the directories (local or remote) is returned. In both cases the platform
description is also returned.

Note that this is not a replacement AMS/DF service as there are no methods for querying or
searching – the descriptions for all currently registered agents are returned in response to a
discovery request. Hence, this discovery mechanism is appropriate for only a small number
of agents per fragment.

(4) get-all-agent-descriptions. This performs exactly the same as the get-advertisement
function when the agents are not registered with a directory service. This is used to force P2P
discovery in the case where the initiator cannot access the directory service where the agents
are registered. See scenario 3, page 4.

In response to a notification from the service discovery middleware, the local discovery
service will call the remote fragment’s get-advertisement action. When one or more
directories are returned two possible actions may occur. If the local agents are not registered
with a directory, they will be registered with the directories returned. If a local directory
exists then it will be federated with the returned directories (based on some strategy as
previously mentioned).

Directory Services (AMS, DF)
The removal of the AMS and DF as mandatory entities allows for lower network, memory
and processor costs, particularly in embedded environments where each fragment only
supports a single agent. The costs of these services are related to the storage of the directory
entries and the time required to process search requests. It is for these reasons that the
discovery service presented above does not perform any searching and only allows local
registrations. On more capable devices the AMS and DF can be activated and utilised not
only by local agents but also those on nearby constrained devices.

In contrast with the existing DF/AMS all directory entries are leased and must be renewed
prior to expiration in a similar manner to Jini[8]. Additional functions subscribe and
unsubscribe are also required to allow the propagation of directory changes to individual
agents.

As has been implied the AMS will also provide DF-style federation as the current method of
FIPA dynamic registration can become unmanageable[9].

Agent
The core Agent class requires only a few modifications which includes default registration
with the local discovery service rather than the AMS and modifications to the DF and AMS
communicators to hide the possible absence of these directories.

4 This two-phase mechanism allows for service discovery protocols which are not flexible enough to
represent complex agent descriptions. With a powerful service discovery language these two steps may
be combined.

Page 6 of 9
Jamie Lawrence jamiel@mle.media.mit.edu

Target Environment
The eventual target environment for these modifications will be smaller-than-phone
embedded devices. However, initial development will be performed on Windows 2000 using
a fixed IP network with an intermediate stage using PersonalJava on Compaq iPAQs.
Wireless technology may be in the form of IrDA, Bluetooth, 802.11a/b or a simple RF radio,
but has yet to be decided. The platform should be able to comfortably operate with a single
agent in (much) less than 512k of memory.

Timescale
The initial development of this platform (including the core features) is estimated to take 6
months culminating in a demonstration in September 2002. Subsequent development may
then be required.

References

 [1] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa, "JADE - A FIPA-compliant
Agent Framework" PAAM '99. See http://jade.cselt.it/papers/PAAM.pdf

 [2] Federico Bergenti and Agostino Poggi, "LEAP: A FIPA Platform for Handheld and
Mobile Devices" ATAL 2001. See http://leap.crm-
paris.com/public/docs/ATAL2001.pdf

 [3] Foundation for Intelligent Physical Agents, "[f-out-00105] FIPA TC Ad-hoc First Call
For Technology"

 [4] Foundation for Intelligent Physical Agents, "[FIPA00023] FIPA Agent Management
Specification"

 [5] Foundation for Intelligent Physical Agents, "[FIPA00094] FIPA Abstract Architecture
Specification (Refinements)"

 [6] Foundation for Intelligent Physical Agents, "FIPA 97 Specification Part 1 Agent
Management" 10-10-1997. Full article at
http://www.fipa.org/specs/fipa00019/OC00019A.pdf

 [7] Giovanni Adorni, Federico Bergenti, Agostino Poggi, and Giovanni Rimassa, "Enabling
FIPA agents on small devices" CIA '01. See http://leap.crm-
paris.com/public/docs/CIA%202001.pdf

 [8] Jim Waldo, Ken Arnold, and The Jini Team, "The Jini Specifications" 15-12-2000

 [9] Michael Berger and Michael Watzke, "FIPA Ad Hoc Proposal Draft" 2002

[10] Project JXTA, "JXTA v1.0 Protocol Specification" See http://www.jxta.org

[11] Thomas Clausen, Philippe Jacquet, Anis Laouiti, Pascale Minet, Paul Muhlethaler,
Amir Qayyum, and Laurent Viennot, "Optimized Link State Routing Protocol" 31-10-
2001. See http://www.ietf.org/internet-drafts/draft-ietf-manet-olsr-05.txt

[12] Zygmunt J.Haas and Marc R.Pearlman, "ZRP - A Hybrid Framework for Routing in Ad
Hoc Networks" in Ad Hoc Networking, Charles Perkins (pages 221-253) 2001

Page 7 of 9
Jamie Lawrence jamiel@mle.media.mit.edu

http://jade.cselt.it/papers/PAAM.pdf
http://leap.crm-paris.com/public/docs/ATAL2001.pdf
http://leap.crm-paris.com/public/docs/ATAL2001.pdf
http://www.fipa.org/specs/fipa00019/OC00019A.pdf
http://leap.crm-paris.com/public/docs/CIA 2001.pdf
http://leap.crm-paris.com/public/docs/CIA 2001.pdf
http://www.jxta.org/
http://www.ietf.org/internet-drafts/draft-ietf-manet-olsr-05.txt

Appendix A: Modelling the Discovery Service as a
Platform Component
Originally the Discovery Service was modelled as a platform component in the same way as
the MTS is currently implemented (i.e. not as an agent). After considerable thought the
Discovery Service was described within this document as an agent acting within the platform
in a similar way to the DF or AMS. However, the question is still open: Should the Discovery
Service be represented as an agent or a service?

In either case it doesn’t change the underlying purpose and functionality of the service, only
the implementation and integration with the LEAP platform.

The Discovery Service as an Agent
The Discovery Service can be modelled as an agent with a number of behaviours to handle
multiple discovery protocols. This would be a more natural model for an entity which can be
described as having “strategies”. In addition, it allows discovery to take a two-phase
approach. The first phase advertises the existence of a fragment, its name, type and the
address of the discovery service using some unspecified discovery methods. The second
phase performs discovery of agents and directories from the discovery service and would be
conducted using ACL via the existing MTS. This two-phase approach may be useful when
the service discovery protocol supports a limited message format.

A possible advantage is that the implications on the LEAP source code are minimised if all
discovery related activities are be contained within an agent and some associated behaviours.

It also seems easier to specify (from a FIPA perspective) the discovery-related interactions as
ACL messages between agents rather than as interactions with a software component.

The Discovery Service as a Platform Component
The FIPA Abstract Architecture[5] acknowledges that a service may be implemented either as
an agent using ACL messages or as a software component with a programmatic interface. In
the past, the ACC within a FIPA platform was modelled as an agent [6] but this requirement
has now been relaxed due to some implementation and theoretical issues. In particular, the
ACC (as an agent) would have had the ability to refuse to send a message which is not
considered a desirable property of this service5.

Discovery can be viewed “as part of the agent environment” in a similar way to message
transport and therefore shouldn’t be elevated to the level of an agent (just as the ACC is no
longer represented as an agent).

Comments
Personally I am neutral regarding this issue but it does appear that modelling the Discovery
Service as an (constrained) agent has a number of advantages including the use of agent
communication for discovery messages.

5 If anyone who was around at the time of these discussions wants to elaborate or correct me, please
contact me!

Page 8 of 9
Jamie Lawrence jamiel@mle.media.mit.edu

Appendix B: Compatibility Issues
FIPA Compatibility
The goal of this project is to create an agent platform with which we can study the emergent
properties of agent communities in a dynamic environment. We are therefore taking a
pragmatic approach this project although it is intended that the results will be applicable to the
standardisation efforts of the FIPA technical committee for Ad-hoc Networks (FIPA TC Ad-
hoc).

With regards to FIPA compatibility, it is debatable whether this platform can comply with the
FIPA Abstract Architecture specification[5]. On the surface, the removal of the AMS and DF
as permanent platform components would fail to comply with the mandatory requirement for
a directory service set out in the FIPA Abstract Architecture. However, the discovery service
can be viewed as an inefficient directory service that in response to a query performs no
filtering and returns all registered entries. Viewed in this way each fragment can comply with
the abstract notion of an agent system but not with the current Agent Management
specification[4].

One modification to the design presented here would be to leave the AMS as a mandatory
component of a fragment [9] and integrate the functionality of the discovery service with that
of the current AMS. This would make the design less radical and more amenable to the FIPA
community without seriously impacting the flexibility of the platform although it has the
affect of overburdening the AMS with responsibilities.

For practical reasons, the implementation of a fragment in a constrained environment may not
be able to use a FIPA compliant transport protocol and therefore the current internal message
transport of LEAP will be used. This in no way affects the quality of this work as a basis for
future standards.

JADE-LEAP Compatibility
It is the aim of this work to maintain the existing JADE/LEAP API’s, as seen from the
perspective of the agent developer. Internal API’s will be altered but where possible they will
retain their existing functionality.

The JADE concepts of a Main Container and multiple Containers will no longer apply in the
same sense – each device will host one or more fragments that will dynamically run directory
services as required (or not at all). For this reason we do not use the terms “main container”
or “container” as they imply some static assignment of status.

Page 9 of 9
Jamie Lawrence jamiel@mle.media.mit.edu

	LEAP for Ad-hoc Networks
	Abstract
	Approach
	Terminology
	Fragment
	Compound
	Federated
	Federation
	Platform
	Directory Service
	Discovery Service
	Neighbourhood and Locality
	FIPA-related Terms

	Motivations
	Requirements
	Basic Usage Scenarios
	1. Direct Communication between Fragments
	2. Activation of Directory Services
	3. A Fragment Connects
	4. A Fragment Disconnects
	5. Registration of an Agent
	6. Multiple Registrations of an Agent
	7. Federation of Directory Services
	8. Disconnected Fragments
	9. Communication between Fragments

	Modifications of the LEAP Platform required to support Ad-Hoc Networks
	Discovery Service
	Directory Services (AMS, DF)
	Agent

	Target Environment
	Timescale
	References

	Appendix A: Modelling the Discovery Service as a Platform Component
	The Discovery Service as an Agent
	The Discovery Service as a Platform Component
	Comments

	Appendix B: Compatibility Issues
	FIPA Compatibility
	JADE-LEAP Compatibility

